Wednesday, 24 May 2017

Moving Average Filterverzögerung

FIR-Filter-Grundlagen 1.1 Was sind FIR-Filterquot-FIR-Filter sind einer von zwei primären Typen von digitalen Filtern, die in digitalen Signalverarbeitungsanwendungen (DSP) verwendet werden, wobei der andere Typ IIR ist. 1.2 Was bedeutet "FIRquot" bedeutet "FIRquot" bedeutet "FInite Impulse Responsequot". Wenn Sie einen Impuls, das heißt, ein einziges quadratisches Beispiel, gefolgt von vielen quot0quot Proben, setzen, werden Nullen herauskommen, nachdem das quot1quot Beispiel seinen Weg durch die Verzögerungslinie des Filters gemacht hat. 1.3 Warum ist die Impulsantwort quotfinitequot Im allgemeinen Fall ist die Impulsantwort endlich, da es keine Rückmeldung in der FIR gibt. Ein Mangel an Feedback garantiert, dass die Impulsantwort endlich ist. Daher ist der Begriff "endliche Impulsantwort" annähernd gleichbedeutend mit einer Quotno-Rückmeldung. Wenn jedoch die Rückkopplung verwendet wird, ist die Impulsantwort endlich, der Filter ist jedoch immer noch ein FIR. Ein Beispiel ist das gleitende Mittelfilter, bei dem jedes Mal, wenn eine neue Probe eintritt, subtrahiert (rückgekoppelt) wird. Dieser Filter hat eine endliche Impulsantwort, obwohl er Rückkopplung verwendet: nach N Abtastungen eines Impulses die Ausgabe Wird immer Null sein. 1.4 Wie kann ich aussprechen firquot Einige Leute sagen, die Buchstaben F-I-R anderen Menschen auszusprechen, als wäre es eine Art von Baum. Wir bevorzugen den Baum. (Der Unterschied besteht darin, ob Sie über einen F-I-R-Filter oder einen FIR-Filter sprechen.) 1.5 Was ist die Alternative zu FIR-Filtern DSP-Filter können auch "Infinite Impulse Responsequot (IIR)" sein. (Siehe dspGurus IIR FAQ.) IIR-Filter verwenden Feedback, so dass bei der Eingabe eines Impulses die Ausgabe theoretisch unendlich klingelt. 1.6 Wie FIR-Filter mit IIR-Filtern vergleichen Jedes hat Vor - und Nachteile. Insgesamt aber überwiegen die Vorteile von FIR-Filtern die Nachteile, so dass sie viel mehr als IIRs verwendet werden. 1.6.1 Was sind die Vorteile von FIR-Filtern (im Vergleich zu IIR-Filtern) Im Vergleich zu IIR-Filtern bieten FIR-Filter folgende Vorteile: Sie lassen sich leicht als quasi-lineare Phasenquotten konzipieren (und sind in der Regel). Einfach ausgedrückt, verzögern lineare Phasenfilter das Eingangssignal, aber donrsquot verzerrt seine Phase. Sie sind einfach zu implementieren. Bei den meisten DSP-Mikroprozessoren kann die FIR-Berechnung durch Schleifen einer einzigen Anweisung durchgeführt werden. Sie eignen sich für Mehrpreisanwendungen. Mit Multi-Rate bedeuten wir entweder einen Dekrementquot (Reduzierung der Abtastrate), eine Interpolation (Erhöhung der Abtastrate) oder beides. Ob Dezimierung oder Interpolation, die Verwendung von FIR-Filtern erlaubt es, einige der Berechnungen wegzulassen, wodurch eine wichtige Recheneffizienz geschaffen wird. Im Gegensatz dazu, wenn IIR-Filter verwendet werden, muss jeder Ausgang individuell berechnet werden, auch wenn dieser Ausgang verworfen wird (so dass die Rückkopplung wird in den Filter integriert werden). Sie haben gewünschte numerische Eigenschaften. In der Praxis müssen alle DSP-Filter mit Hilfe einer Finite-Precision-Arithmetik, dh einer begrenzten Anzahl von Bits, implementiert werden. Die Verwendung von Finite-Precision-Arithmetik in IIR-Filtern kann aufgrund des Feedbacks erhebliche Probleme verursachen, aber FIR-Filter ohne Rückkopplung können gewöhnlich mit weniger Bits implementiert werden, und der Konstrukteur hat weniger praktische Probleme, die mit der nicht idealen Arithmetik zusammenhängen. Sie können mit Hilfe von fractional arithmetic implementiert werden. Im Gegensatz zu IIR-Filtern ist es immer möglich, ein FIR-Filter unter Verwendung von Koeffizienten mit einer Grße von weniger als 1,0 einzusetzen. (Die Gesamtverstärkung des FIR-Filters kann bei Bedarf an seinem Ausgang eingestellt werden.) Dies ist ein wichtiger Aspekt bei der Verwendung von Festpunkt-DSPs, da sie die Implementierung viel einfacher macht. 1.6.2 Was sind die Nachteile von FIR-Filtern (im Vergleich zu IIR-Filtern) Im Vergleich zu IIR-Filtern haben FIR-Filter manchmal den Nachteil, dass sie mehr Speicher und Berechnung benötigen, um eine gegebene Filtercharakteristik zu erreichen. Auch sind bestimmte Reaktionen mit FIR-Filtern nicht praktikabel. 1.7 Welche Begriffe werden bei der Beschreibung von FIR-Filtern verwendet? Impulsantwort - Der Impulsantwortfaktor eines FIR-Filters ist eigentlich nur der Satz von FIR-Koeffizienten. (Wenn Sie ein quotimplusequot in einen FIR-Filter setzen, der aus einem quotierten Quot-Sample besteht, gefolgt von vielen quot0quot-Samples, ist das Ausgangssignal des Filters der Satz von Koeffizienten, wenn sich die 1 Sample nacheinander um jeden Koeffizienten bewegt, um die Ausgabe zu bilden. Tippen - Ein FIR quottapquot ist einfach ein Koeffizientenverzögerungspaar. Die Anzahl der FIR-Anzapfungen (oft als "Anfasser" bezeichnet) ist ein Hinweis auf 1) die zur Implementierung des Filters erforderliche Speicherkapazität, 2) die Anzahl der erforderlichen Berechnungen und 3) die Menge des Filterfilters, Multiply-Accumulate (MAC) - In einem FIR-Kontext ist ein MACquot der Vorgang des Multiplizierens eines Koeffizienten mit dem entsprechenden verzögerten Datenabtastwert und dem Akkumulieren des Ergebnisses. FIRs erfordern normalerweise einen MAC pro Hahn. Die meisten DSP-Mikroprozessoren implementieren die MAC-Operation in einem einzigen Befehlszyklus. Transition Band - Das Frequenzband zwischen Passband - und Stopband-Kanten. Je schmaler das Übergangsband ist, desto mehr Taps werden benötigt, um den Filter zu implementieren. (Ein quotsmallquot-Übergangsband führt zu einem quotsharpquot-Filter.) Delay Line - Der Satz von Speicherelementen, die die quotZ-1quot-Verzögerungselemente der FIR-Berechnung implementieren. Zirkulärer Puffer - Ein spezieller Puffer, der zirkulär ist, weil eine Inkrementierung am Ende dazu führt, dass er an den Anfang wickelt, oder weil das Dekrementieren von Anfang an bewirkt, dass es bis zum Ende umwickelt. Zirkuläre Puffer werden oft von DSP-Mikroprozessoren bereitgestellt, um den Quotientenquot der Proben durch die FIR-Verzögerungsleitung zu implementieren, ohne die Daten im Speicher wörtlich bewegen zu müssen. Wenn ein neues Sample dem Puffer hinzugefügt wird, ersetzt es automatisch die älteste. Dokumentation Dieses Beispiel zeigt, wie Sie gleitende Durchschnittsfilter und Resampling verwenden, um die Auswirkungen von periodischen Komponenten der Tageszeit auf die stündlichen Temperaturmessungen zu isolieren und zu entfernen Unerwünschtes Leitungsrauschen aus einer offenen Spannungsmessung. Das Beispiel zeigt auch, wie die Pegel eines Taktsignals zu glätten sind, während die Kanten durch Verwendung eines Medianfilters bewahrt werden. Das Beispiel zeigt auch, wie ein Hampel-Filter verwendet wird, um große Ausreißer zu entfernen. Motivation Glättung ist, wie wir wichtige Muster in unseren Daten zu entdecken, während Sie Dinge, die unwichtig sind (d. H. Rauschen). Wir verwenden Filter, um diese Glättung durchzuführen. Das Ziel der Glättung ist es, langsame Änderungen im Wert zu produzieren, so dass seine einfacher zu sehen, Trends in unseren Daten. Manchmal, wenn Sie Eingangsdaten untersuchen, können Sie die Daten glatt machen, um einen Trend im Signal zu sehen. In unserem Beispiel haben wir eine Reihe von Temperaturmessungen in Celsius genommen jede Stunde am Logan Flughafen für den gesamten Monat Januar 2011. Beachten Sie, dass wir visuell sehen können, die Wirkung, die die Tageszeit auf die Temperaturwerte hat. Wenn Sie sich nur für die tägliche Temperaturschwankung im Laufe des Monats interessieren, tragen die stündlichen Fluktuationen nur zu Lärm bei, was die täglichen Variationen schwer unterscheiden kann. Um den Effekt der Tageszeit zu entfernen, möchten wir nun unsere Daten mit einem gleitenden Mittelfilter glätten. Ein Moving Average Filter In seiner einfachsten Form nimmt ein gleitender Durchschnittsfilter der Länge N den Durchschnitt jeder N aufeinanderfolgenden Samples der Wellenform an. Um einen gleitenden Mittelwertfilter auf jeden Datenpunkt anzuwenden, konstruieren wir unsere Koeffizienten unseres Filters, so dass jeder Punkt gleich gewichtet ist und 124 zum Gesamtdurchschnitt beiträgt. Dies gibt uns die durchschnittliche Temperatur über jeden Zeitraum von 24 Stunden. Filterverzögerung Beachten Sie, dass der gefilterte Ausgang um etwa zwölf Stunden verzögert wird. Dies ist auf die Tatsache zurückzuführen, dass unser gleitender Durchschnittsfilter eine Verzögerung hat. Jedes symmetrische Filter der Länge N hat eine Verzögerung von (N-1) 2 Abtastungen. Wir können diese Verzögerung manuell berücksichtigen. Extrahieren von Durchschnittsdifferenzen Alternativ können wir auch das gleitende Mittelfilter verwenden, um eine bessere Schätzung zu erhalten, wie die Tageszeit die Gesamttemperatur beeinflusst. Dazu müssen Sie zuerst die geglätteten Daten von den stündlichen Temperaturmessungen subtrahieren. Dann segmentieren Sie die differenzierten Daten in Tage und nehmen Sie den Durchschnitt über alle 31 Tage im Monat. Extrahieren von Peak Envelope Manchmal möchten wir auch eine glatt variierende Schätzung haben, wie sich die Höhen und Tiefen unseres Temperatursignals täglich ändern. Um dies zu erreichen, können wir die Hüllkurvenfunktion verwenden, um extreme Höhen und Tiefen zu verbinden, die über eine Untermenge der 24-Stundenperiode erkannt werden. In diesem Beispiel stellen wir sicher, dass es mindestens 16 Stunden zwischen jedem extrem hohen und extrem niedrigen Niveau gibt. Wir können auch ein Gefühl dafür, wie die Höhen und Tiefen sind Trends, indem sie den Durchschnitt zwischen den beiden Extremen. Weighted Moving Average Filter Andere Arten von Moving Average Filtern gewichten nicht jede Probe gleichermaßen. Ein weiteres gemeinsames Filter folgt der Binomialexpansion von (12,12) n Dieser Filtertyp approximiert eine Normalkurve für große Werte von n. Es ist nützlich zum Herausfiltern von Hochfrequenzrauschen für kleine n. Um die Koeffizienten für das Binomialfilter zu finden, falten Sie 12 12 mit sich selbst und konvergieren dann iterativ den Ausgang mit 12 12 eine vorgeschriebene Anzahl von Malen. Verwenden Sie in diesem Beispiel fünf Gesamt-Iterationen. Ein anderer Filter, der dem Gaußschen Expansionsfilter ähnlich ist, ist der exponentiell gleitende Durchschnittsfilter. Diese Art des gewichteten gleitenden Durchschnittsfilters ist einfach zu konstruieren und erfordert keine große Fenstergröße. Sie passen einen exponentiell gewichteten gleitenden Durchschnittsfilter durch einen Alpha-Parameter zwischen null und eins an. Ein höherer Wert von Alpha wird weniger Glättung haben. Untersuche die Messwerte für einen Tag. Wähle dein Land


No comments:

Post a Comment